PRICES include / exclude VAT
Homepage>ASTM Standards>ASTM D5240_D5240M-20 - Standard Test Method for Evaluation of the Durability of Rock for Erosion Control Using Sodium Sulfate or Magnesium Sulfate
Sponsored link
Released: 01.01.2020

ASTM D5240_D5240M-20 - Standard Test Method for Evaluation of the Durability of Rock for Erosion Control Using Sodium Sulfate or Magnesium Sulfate

Standard Test Method for Evaluation of the Durability of Rock for Erosion Control Using Sodium Sulfate or Magnesium Sulfate

Format
Availability
Price and currency
English PDF Redline
Immediate download
72.23 EUR
English PDF
Immediate download
60.67 EUR
English Hardcopy
In stock
60.67 EUR
Standard number:ASTM D5240_D5240M-20
Released:01.01.2020
Status:Active
Pages:8
Section:04.08
Keywords:riprap; rock defects; rock durability; rock weathering; soundness of riprap;
DESCRIPTION

1.1 This test method covers test procedures for evaluating the soundness of rock for erosion control by the effects of a sodium or magnesium sulfate solution on slabs of rock. It is an accelerated weathering test. The rock slabs, prepared in accordance with procedures in Practice D5121, are intended to be representative of erosion control sized materials and their inherent weaknesses. The test is appropriate for breakwater stone, armor stone, riprap and gabion sized rock materials.

1.1.1 The limitations of this test are twofold. First the test is a simulation of freezing and thawing conditions using accelerated life cycling techniques. The test evaluates the internal expansive force derived from the rehydration of the salt upon re-immersion, an event that may not occur in some natural environments, to simulate the expansion of water rather than the actual freezing of water. Secondly, the size of the cut rock slab specimens may eliminate some of the internal defects present in the rock structure. The test specimens may not be representative of the quality of the larger rock samples used in construction. Careful examination of the rock source and proper sampling are essential in minimizing this limitation.

1.2 The use of reclaimed concrete and other materials for erosion control is beyond the scope of this test method.

1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.

1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The slug unit is not given unless dynamic (F=ma) calculations are involved.

1.3.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; the absolute and the gravitational systems. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.

1.3.3 Calculations are done using only one set of units; either SI or gravitational inch-pound. Other units are permissible, provided appropriate conversion factors are used to maintain consistency of units throughout the calculations, and similar significant digits or resolution, or both are maintained.

1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.

1.4.1 For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.

1.4.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.