PRICES include / exclude VAT
Homepage>ASTM Standards>ASTM D6029_D6029M-20 - Standard Practice for (Analytical Procedures) Determining Hydraulic Properties of a Confined Aquifer and a Leaky Confining Bed with Negligible Storage by the Hantush-Jacob Method
Sponsored link
Released: 01.06.2020

ASTM D6029_D6029M-20 - Standard Practice for (Analytical Procedures) Determining Hydraulic Properties of a Confined Aquifer and a Leaky Confining Bed with Negligible Storage by the Hantush-Jacob Method

Standard Practice for (Analytical Procedures) Determining Hydraulic Properties of a Confined Aquifer and a Leaky Confining Bed with Negligible Storage by the Hantush-Jacob Method

Format
Availability
Price and currency
English PDF Redline
Immediate download
79.93 EUR
English PDF
Immediate download
66.45 EUR
English Hardcopy
In stock
66.45 EUR
Standard number:ASTM D6029_D6029M-20
Released:01.06.2020
Status:Active
Pages:11
Section:04.09
Keywords:aquifers; aquifer tests; confined aquifers; confining beds; control wells; groundwater; hydraulic properties; leakance; leaky aquifers; observation wells; storage coefficient; transmissivity;
DESCRIPTION

1.1 This practice covers an analytical procedure for determining the transmissivity and storage coefficient of a confined aquifer and the leakance value of an overlying or underlying confining bed for the case where there is negligible change of water in storage in a confining bed. This practice is used to analyze water-level or head data collected from one or more observation wells or piezometers during the pumping of water from a control well at a constant rate. With appropriate changes in sign, this practice also can be used to analyze the effects of injecting water into a control well at a constant rate.

1.2 This analytical procedure is used in conjunction with Test Method D4050.

1.3 Limitations—The valid use of the Hantush-Jacob method is limited to the determination of hydraulic properties for aquifers in hydrogeologic settings with reasonable correspondence to the assumptions of the Theis nonequilibrium method (Practice D4106) with the exception that in this case the aquifer is overlain, or underlain, everywhere by a confining bed having a uniform hydraulic conductivity and thickness, and in which the gain or loss of water in storage is assumed to be negligible, and that bed, in turn, is bounded on the distal side by a zone in which the head remains constant. The hydraulic conductivity of the other bed confining the aquifer is so small that it is assumed to be impermeable (see Fig. 1).

FIG. 1 Cross Section Through a Discharging Well in a Leaky Aquifer (from Reed (1)3). The Confining and Impermeable Bed Locations Can Be Interchanged

 Cross Section Through a Discharging Well in a Leaky Aquifer (from Reed ). The Confining and Impermeable Bed Locations Can Be Interchanged Cross Section Through a Discharging Well in a Leaky Aquifer (from Reed ). The Confining and Impermeable Bed Locations Can Be Interchanged

1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of results in units other than SI shall not be regarded as nonconformance with this standard.

1.5 All observed and calculated values shall conform to the guidelines for significant digits and round established in Practice D6026, unless superseded by this standard.

1.5.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported date to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis method for engineering design.

1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of the practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without the consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.