PRICES include / exclude VAT
Homepage>ASTM Standards>ASTM D7383-19 - Standard Test Methods for Axial Rapid Load (Compressive Force Pulse) Testing of Deep Foundations
Sponsored link
Released: 01.03.2019

ASTM D7383-19 - Standard Test Methods for Axial Rapid Load (Compressive Force Pulse) Testing of Deep Foundations

Standard Test Methods for Axial Rapid Load (Compressive Force Pulse) Testing of Deep Foundations

Format
Availability
Price and currency
English PDF Redline
Immediate download
72.23 EUR
English PDF
Immediate download
60.67 EUR
English Hardcopy
In stock
60.67 EUR
Standard number:ASTM D7383-19
Released:01.03.2019
Status:Active
Pages:9
Section:04.09
Keywords:axial compressive force pulse; displacement response; inertial reaction mass; rapid load test; ultimate axial pile capacity;
DESCRIPTION

1.1 These test methods, commonly referred to as Rapid Load Testing, cover procedures for testing an individual vertical or inclined deep foundation element to determine the displacement response to an axial compressive force pulse applied at its top. These non-static foundation test methods apply to all deep foundation units, referred to herein as “piles,” that function in a manner similar to driven or cast-in-place piles, regardless of their method of installation.

1.2 Two alternative procedures are provided:

1.2.1 Procedure A uses a combustion gas pressure apparatus to produce the required axial compressive force pulse.

1.2.2 Procedure B uses a cushioned drop mass apparatus to produce the required axial compressive force pulse.

1.3 This standard provides minimum requirements for testing deep foundations under an axial compressive force pulse. Plans, specifications, provisions (or combinations thereof) prepared by a qualified engineer, may provide additional requirements and procedures as needed to satisfy the objectives of a particular deep foundation test program. The engineer in responsible charge of the foundation design, referred to herein as the “Engineer,” shall approve any deviations, deletions, or additions to the requirements of this standard.

1.4 The proper conduct and evaluation of the test requires special knowledge and experience. A qualified engineer should directly supervise the acquisition of field data and the interpretation of the test results so as to predict the actual performance and adequacy of deep foundations used in the constructed foundation. A qualified engineer shall approve the apparatus used for applying the force pulse, rigging and hoisting equipment, support frames, templates, and test procedures.

1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.7.1 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data

1.8 The method used to specify how data are collected, calculated or recorded in this standard is not directly related to the accuracy to which the data can be applied in the design or other uses, or both. How one uses the results obtained using this standard is beyond its scope.

1.9 ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Section 7 provides a partial list of specific hazards and precautions.

1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.