PRICES include / exclude VAT
Homepage>ASTM Standards>77>77.140>77.140.40>ASTM E0354-21E01 - Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys
Sponsored link
Released: 01.03.2021

ASTM E0354-21E01 - Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

Format
Availability
Price and currency
English PDF
Immediate download
86.67 EUR
English Hardcopy
In stock
86.67 EUR
Standard number:ASTM E0354-21E01
Released:01.03.2021
Status:Active
Pages:36
Section:03.05
Keywords:aluminum; atomic absorption; chromium; cobalt; cobalt alloys; copper; gravimetric; high temperature alloys; ion exchange; iron; magnetic alloys; manganese; molybdenum; nickel; nickel alloys; phosphorus; silicon; spectrometry; spectrophotometric; tin; titration; titrimetric;
DESCRIPTION

1.1 These test methods cover the chemical analysis of high-temperature, electrical, magnetic, and other similar iron, nickel, and cobalt alloys having chemical compositions within the following limits:

 

  Element

Composition Range, %

 

 

 

 

 

 

 

 

Aluminum

0.005

to

18.00

 

 

Beryllium

0.001

to

 0.05

 

 

Boron

0.001

to

 1.00

 

 

Calcium

0.002

to

  0.05

 

 

Carbon

0.001

to

 1.10

 

 

Chromium

0.10 

to

33.00

 

 

Cobalt

0.10 

to

75.00

 

 

Columbium (Niobium)

0.01 

to

 6.0

 

 

Copper

0.01 

to

10.00

 

 

Iron

0.01 

to

85.00

 

 

Magnesium

0.001

to

 0.05

 

 

Manganese

0.01 

to

 3.0

 

 

Molybdenum

0.01 

to

30.0

 

 

Nickel

0.10 

to

84.0

 

 

Nitrogen

0.001

to

 0.20

 

 

Phosphorus

0.002

to

 0.08

 

 

Silicon

0.01 

to

 5.00

 

 

Sulfur

0.002

to

 0.10

 

 

Tantalum

0.005

to

10.0

 

 

Titanium

0.01 

to

 5.00

 

 

Tungsten

0.01 

to

18.00

 

 

Vanadium

0.01 

to

 3.25

 

 

Zirconium

0.01 

to

 2.50

 

1.2 The test methods in this standard are contained in the sections indicated below:

 

Sections

 

 

Aluminum, Total, by the 8-Quinolinol Gravimetric Method (0.20 %
   to 7.00 %)

100 – 107

Carbon, Total, by the Combustion-Thermal Conductivity Method—Discontinued 1986

124 – 134

Carbon, Total, by the Combustion Gravimetric Method (0.05 % to
 1.10 %)—Discontinued 2014

79 – 89

Chromium by the Atomic Absorption Spectrometry Method
   (0.006 % to 1.00 %)

165 – 174

Chromium by the Peroxydisulfate Oxidation—Titration Method
 (0.10 % to 33.00 %)

175 – 183

Chromium by the Peroxydisulfate-Oxidation Titrimetric Method—
   Discontinued 1980

116 – 123

Cobalt by the Ion-Exchange-Potentiometric Titration Method (2 %
   to 75 %)

53 – 60

Cobalt by the Nitroso-R-Salt Spectrophotometric Method (0.10 %
    to 5.0 %)

61 – 70

Copper by Neocuproine Spectrophotometric Method (0.01 % to
   10.00 %)

90 – 99

Copper by the Sulfide Precipitation-Electrodeposition Gravimetric
 Method (0.01 % to 10.00 %)

71 – 78

Iron by the Silver Reduction Titrimetric Method (1.0 % to 50.0 %)

192 –199

Manganese by the Metaperiodate Spectrophotometric Method
   (0.05 % to 2.00 %)

9 – 18

Molybdenum by the Ion Exchange—8-Hydroxyquinoline Gravi-
 metric Method (1.5 % to 30 %)

184 – 191

Molybdenum by the Thiocyanate Spectrophotometric Method
   (0.01 % to 1.50 %)

153 – 164

Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to
 84.0 %)

135 – 142

Phosphorus by the Molybdenum Blue Spectrophotometric Method
   (0.002 % to 0.08 %)

19  – 30

Silicon by the Gravimetric Method (0.05 % to 5.00 %)

46  – 52

Sulfur by the Gravimetric Method—Discontinued
   1988

Former 30  – 36

Sulfur by the Combustion-Iodate Titration Method (0.005 % to
 0.1 %)—Discontinued 2014

37  – 45

Sulfur by the Chromatographic Gravimetric Method—Discontinued
   1980

108 – 115

Tin by the Solvent Extraction–Atomic Absorption Spectrometry
   Method (0.002 % to 0.10 %)

143  – 152

1.3 Methods for the determination of carbon and sulfur not included in this standard can be found in Test Methods E1019.

1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single method and therefore this standard contains multiple methods for some elements. The user must select the proper method by matching the information given in the Scope and Interference sections of each method with the composition of the alloy to be analyzed.

1.5 Units—The values stated in SI units are to be regarded as standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.