PRICES include / exclude VAT
Homepage>ASTM Standards>19>19.100>ASTM E1411-23 - Standard Practice for Qualification of Radioscopic Systems
Sponsored link
Released: 01.12.2023

ASTM E1411-23 - Standard Practice for Qualification of Radioscopic Systems

Standard Practice for Qualification of Radioscopic Systems

Format
Availability
Price and currency
English PDF Redline
Immediate download
79.93 EUR
English PDF
Immediate download
66.45 EUR
English Hardcopy
In stock
66.45 EUR
Standard number:ASTM E1411-23
Released:01.12.2023
Status:Active
Pages:13
Section:03.03
Keywords:contrast sensitivity; detector unsharpness; duplex wire gauge; edge sharpening; field of view (FOV); focal detector distance (FDD); focal object distance (FOD); focal spot size; image processor; image quality indicator; imager; image unsharpness; line-pair gauge; magnification; near real-time radioscopy; noise reduction; penetrating radiation; radioscopic; radioscopic examination geometry; raster scan; real-time radioscopy; static mode; step wedge; transmitted beam;
DESCRIPTION

1.1 This practice covers test and measurement details for measuring the performance of X-ray and gamma ray radioscopic systems. Radioscopy is a radiographic technique that can be used in (1) dynamic mode radioscopy to track motion or optimize radiographic parameters in real-time (25 to 30 frames per second), or both, near real-time (a few frames per second), or high speed (hundreds to thousands of frames per second) or (2) static mode radioscopy where there is no motion of the object during exposure as a filmless recording medium. This practice2 provides application details for radioscopic examination using penetrating radiation using an analog component such as an electro-optic device (for example, X-ray image intensifier (XRII) or analog camera, or both) or a Digital Detector Array (DDA) used in dynamic mode radioscopy. This practice is not to be used for static mode radioscopy using DDAs. If static radioscopy using a DDA (that is, DDA radiography) is being performed, use Practice E2698.

1.1.1 This practice also may be used for Linear Detector Array (LDA) applications where an LDA uses relative perpendicular motion between the detector and component to build an image line by line.

1.1.2 This practice may also be used for “flying spot” applications where a pencil beam of X-rays rasters over an object to build an image point by point.

1.2 Basis of Application: 

1.2.1 The requirements of this practice and Practice E1255 shall be used together. The requirements of Practice E1255 provide the minimum requirements for radioscopic examination of materials. This practice is intended as a means of initially qualifying and re-qualifying a radioscopic system for a specified application by determining its performance when operated in a static or dynamic mode. Re-qualification may require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization and should be addressed in the purchase order or the contract.

1.2.2 System architecture including the means of radioscopic examination record archiving and the method for making the accept/reject decision are also unique system features and their effect upon system performance must be evaluated.

1.2.3 This qualification procedure is intended to benchmark radioscopic system performance under selected operating conditions to provide a measure of system performance. Qualification shall not restrict operation of the radioscopic system at other radioscopic examination parameter settings, which may provide improved performance on actual examination objects. This practice neither approves nor disapproves the use of the qualified radioscopic system for the specified application. It is intended only as a standardized means of evaluating system performance.

1.3 The general principles, as stated in this practice, apply broadly to transmitted-beam penetrating radiation radioscopy systems. Other radioscopic systems, such as those employing neutrons and Compton back-scattered X-ray imaging techniques, are not covered as they may involve equipment and application details unique to such systems.

1.4 The user of this practice shall note that energies higher than 320 keV may require different methods than those described within this practice.

1.5 This practice requires that a System Qualification Report be issued before using the system for production use.

1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.