PRICES include / exclude VAT
Homepage>BS Standards>17 METROLOGY AND MEASUREMENT. PHYSICAL PHENOMENA>17.220 Electricity. Magnetism. Electrical and magnetic measurements>17.220.20 Measurement of electrical and magnetic quantities>BS EN 61788-14:2010 Superconductivity Superconducting power devices. General requirements for characteristic tests of current leads designed for powering superconducting devices
Sponsored link
immediate downloadReleased: 2010-09-30
BS EN 61788-14:2010 Superconductivity Superconducting power devices. General requirements for characteristic tests of current leads designed for powering superconducting devices

BS EN 61788-14:2010

Superconductivity Superconducting power devices. General requirements for characteristic tests of current leads designed for powering superconducting devices

Format
Availability
Price and currency
English Secure PDF
Immediate download
249.60 EUR
You can read the standard for 1 hour. More information in the category: E-reading
Reading the standard
for 1 hour
24.96 EUR
You can read the standard for 24 hours. More information in the category: E-reading
Reading the standard
for 24 hours
74.88 EUR
English Hardcopy
In stock
249.60 EUR
Standard number:BS EN 61788-14:2010
Pages:32
Released:2010-09-30
ISBN:978 0 580 64252 4
Status:Standard
DESCRIPTION

BS EN 61788-14:2010


This standard BS EN 61788-14:2010 Superconductivity is classified in these ICS categories:
  • 17.220.20 Measurement of electrical and magnetic quantities
  • 29.050 Superconductivity and conducting materials
IEC 61788-14:2010 provides general requirements for characteristic tests of conventional as well as superconducting current leads to be used for powering superconducting equipment. Current leads are indispensable components of superconducting devices in practical uses such as MRI diagnostic equipment, NMR spectrometers, single crystal growth devices, SMES, particle accelerators such as Tevatron, HERA, RHIC and LHC, experimental test instruments for nuclear fusion reactors, such as ToreSupra, TRIAM, LHD, EAST, KSTAR, W7-X, JT-60SA and ITER, etc., and of advanced superconducting devices in the near future in practical uses such as magnetic levitated trains, superconducting fault current limiters, superconducting transformers, etc. The major functions of current leads are to power high currents into superconducting devices and to minimize the overall heat load, including heat leakage from room temperature to cryogenic temperature and Joule heating through current leads. For this purpose, current leads are dramatically effective for lowering the overall heat load to use the high temperature superconducting component as a part of the current leads. Key words: superconductivity, TC90