BS ISO 17736:2010
Workplace air quality. Determination of isocyanate in air using a double-filter sampling device and analysis by high pressure liquid chromatography
Standard number: | BS ISO 17736:2010 |
Pages: | 38 |
Released: | 2011-05-31 |
ISBN: | 978 0 580 66739 8 |
Status: | Standard |
BS ISO 17736:2010
This standard BS ISO 17736:2010 Workplace air quality. Determination of isocyanate in air using a double-filter sampling device and analysis by high pressure liquid chromatography is classified in these ICS categories:
- 13.040.30 Workplace atmospheres
This International Standard gives general guidelines for the sampling and analysis of airborne isocyanates in workplace air. This International Standard is appropriate for organic compounds containing free isocyanate functional groups and is specific for the quantification of monomers, polymers and prepolymers, vapours and aerosols. Differential air sampling is performed with a segregating device which can show the physical state of the isocyanates analysed as found in the field. This capacity, however, may show limitations for given situations, e.g. when aerosols collected on the first filter contain free monomer that migrates to the second filter and is then quantified as vapour phase isocyanate. The determination of aromatic monomers includes toluene diisocyanate (TDI) and 4,4'-diisocyanato-diphenylmethane (MDI). Aliphatic monomers include isophorone diisocyanate (IPDI), 4,4'-methylene bis-(cyclohexyl isocyanate) (HMDI) and 1,6-hexamethylene diisocyanate (HDI). Isocyanate oligomers and prepolymers can also be determined using this method.
The double-filter method is designed to determine short-term (15 min) exposure concentrations of organic isocyanates in a workplace environment by personal monitoring or by fixed location monitoring. However, if the exposure is expected to be in vapour form only, then sampling time can be extended to 8 h. Since the filter is derivatized in the field immediately after sampling, loss of isocyanate aerosol because of its reaction with other chemicals is negligible except for very fast-reacting isocyanate systems such as foam spraying of MDI in polyurethane applications. The method is suitable for the measurement of airborne organic isocyanates in the NCO equivalent concentration range of 0,01 µg/sample to 2,1 µg/sample, corresponding to approximately 0,67 µg/m3 to 140 µg/m3 for a 15 l sample volume. This range brackets about eight times the current established threshold limit value (TLV) of 5 ppb for monomers set by many national authorities.